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ABSTRACT

The rocket trajectory simulation programs in use at the Physical Science
Laboratory of New Mexico State University are described. The purpose and

methods of use of the programs are discussed, the theory is outlined, and the

equations are listed in summary form.
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THE TRAJECTORY SIMULATION PROGRAMS
OF PSL/NMSU

1. Purpose of the Programs

1.1 The trajectory simulation programs now in use by the Physical Science
Laboratory of New Mexico State University are designed to simulate multi-stage,
unguided rocket trajectories from launch to impect. The programs were designed
to supplement each other to furnish data for the following general objectives:

(a) Investigate performance characteristics such as peak altitude
and range to impact for a given rocket configuration as func-
tions of launch angle and payload.

(b) Obtain the necessary tables for use in computing corrections
to launcher setting to compensate for wind effects.

(¢) Compute estimates of impact dispersion.

i;g A trajectory simulation program is a special case of thé time domain
solution, by iterative methods, of a set of ordinary differential equations
starting with given initial conditions.

From the digital computer programmer's point of view, a "rocket" is

a set of n differential equations, which can be written
Xy = 3 (x3, t) 1, =(1,2, ..., n) 1-1

and for which a set of initial conditionms Xios to are known. The functions



fy are, in general, non-linear and in fact contain functional relationships
which are expressed only in tabular form. For equations of this type, it is
impossible to write a closed form solution of 1-1l. That is, it is impossible

to find functions @; such that

x3 (t) = ¢3 (xjo’ to) . 1-2

If the functions fy are such that xi can be expressed by a Taylor's
series expansion about ty, the equations (1-1) can be integrated by a numer-
ical technique over a small integration interval At. If At is chosen small
enough, x4 (to + At) can be evaluated to any desired accuracy. The particu-
lar method used in the PSL trajectory program is given in 2.1 and is derived

in Reference 1.

The output values of the first step integration program, Xxj (to + At),

(to + At) are used for initial conditions to compute the next point, and so on.
Use of this method means that computation of impact coordinates for
a given set of initial conditions will require the step-by-step integration
of the entire trajectory from launch to impact. Each change in initial con-
ditions, and each change in the functional description of the rocket will
require a complete new trajectory computation.
Since this process is extremely time consuming, every possible means

is used to shorten the computations.

1.3 The use of several programs is motivated by the fact that each pro-
gram, when designed for a specific purpose, is more efficient than a single

general purpose program would be.



Flve programs are in use:

Program

Two-Dimensional Particle Trajectory

Two-Dimensional Rigid Body Standard Trajectory
Two-Dimensional Rigid Body with Wind Trajectory
Two-Dimensional Rigid Body with Malalignments Trajectory

Three-Dimensional Particle with Curved Earth Trajectory

All five programs have certain features in common, including:

(2)
(v)
(c)
(4)
(e)

Tables and equations for thrust, mass and drag.
Atmospheric data.

Table look-up routine.

Integration routine.

Time interval control, and discontinuity check.

These features are discussed in Section 2.

The limitations common to all five programs are:

(a) Wind effects and dispersion terms can be computed only

(b)

(c)
(d)

in the pitch plane. The effects normal to the flight
path, which are variously termed yaw effects, heading
effects or cross-range effects, must be estimated from
the pitch plane data.

Coupling effects in yaw and pitch caused by roll cannot
be computed.

Aerodynamic terms are limited to linearized coefficients.
Gyroscopic effects caused by missile roll cannot be

computed.



};ﬁ The Two-Dimensional Particle Trajectory Program was designed to ob-
tain rocket performance characteristics as functions of launch angle and
payload. It can also be used to compute performance (altitude and range)
variations caused by

(a) Thrust varlation, expressed as a percentage of normal thrust
vse. time.

(b) Drag variation, expressed as a percentage variation of the
drag coefficient as a function of Mach Number.

(c) Second stage ignition time variation, or interstage delay
time.

1.4.1 The particle trajectory equations constrain the thrust and

drag forces to act along the velocity vector. Tne equations can also be des-
cribed as "zero angle of attack", "infinite stability", or "zero inertia"
equations. The equations cannot describe:

(a) Wind effects

(b) Aerodynamic or thrust malalignment effects

(¢) vVehicle response lag to any change of conditions.
The response lag limitation causes the trajectory description to be inaccurate
for zero-length or low velocity launches. If the launch velocity is relatively
high (over 150 ft/sec.) the trajectories as computed correspond very closely
to those obtained from the rigid body equations with no perturbations. The
particle trajectory is used for overall performance evaluation, wherever
possible, because of:

(a) Much greater speed of computing,

(b) Relative simplicity of set-up for computation.



to:

15

1.4.2 The force equations contain:

(a) Gravitational force directed parallel to the vertical
(z) coordinate and varylng inversely as the square of
the distance from the earth's center.

(b) Thrust force, acting along the velocity vector.

(¢) Drag force, acting opposite to the velocity vector.

Two-Dimensional Rigid Body Standard Trajectory Program was designed

(a) Provide performance and performance variation data when response
lag characteristics do not allow the Particle Trajectory Program
to be used.

(b) Provide a standard for computing performance variation when
perturbations are introduced in the other rigid body programs.
For example, the difference between impact range for a given
launch angle and a specified wind, as computed by Program 3,
and the impact range for the same rocket at the same launch
angle, as computed by this program, gives the impact displace-
ment due to the specified wind. The equations and tables of
this program are the same as those of the other two, except for
the terms for wind effects in Program 3 and the terms for mal-
alignment effects in Program L.

(¢) Compute performance variation and dispersion caused by varia-
tions in pitch angle and pitch angular velocities at the
instant of separation from the lancher. The variations are

usually called "tip-off".




1.5.1 The forces and moments acting on the rocket are:

(a) Gravitational force as used in Program 1.

(b) Thrust vector magnitude as used in Program 1, acting
along the longitudinal axis of the rocket.

(¢) Drag force as used in Program 1.

(d) Lift force, acting normal to the drag force, and pro-
portional to the sine of twice the angle of attack.

(e) Aerodynamic restoring moment produced by the resultant
of 1ift and drag forces, acting at the center of pfessure.

(f) Aerodynamic damping moment.

(g) Jet damping moment.

}:é_ The Two-Dimensional Rigid Body with Wind Trajectory was designed
to compute:

(a) Effect on range of a uniform wind acting on the rocket from
launch altitude to an altitude of negligible wind effect. Range
effect of a unit wind is called the unit wind effect, and is
considered to be a function of launch angle.

(b) Wind weighting function "f" as a function of altitude.

(¢) Effect on the trajectory of any wind condition which can be
represented as a tabular function of altitude.

1.6.1 The equations for forces and moments acting on the rocket are

the same as those of Program 2, except:
(a) Drag force acts in the direction of the relative velocity
vector, which is the velocity vector of the rocket rela-
tive to the moving air.

(b) Lift force is normal to the relative velocity vector.



};Z The Two-Dimensional Rigid Body with Malalignments Trajectory Program
was designed to provide:
(a) Computation of the effect on the trajectory of a thrust mal-
alignment on each stage independently.
(b) Computation of the effect on the trajectory of a fin malalign-
ment on each gtage independently.
1.7.1 In a two-dimensional program, malalignment effects are com-
puted in the pitch plane only.
The equations compute this effect by:
(a) Integrating the roll rate and adding an initial roll
angle to obtain roll angle.
(b) Multiplying the malalignment forces and moments by the
sine of the roll angle to obtain the pitch plane com-
ponent of the forces and moments.

1l.7.2 The equations for forces and moments are the same as in Pro-

gram 2, with the addition of:

(a) A thrust malalignment force component, acting normal to
the rocket longitudinal axis; equal to the thrust force,
as used in Programs 1 through 3, multiplied by the sine
of a malalignment angle and’by the sine of the roll
angle.

(b) A thrust malalignment moment, obtained by multiplying
the thrust malalignment force by the distance from the
rocket center of mass to the rocket motor throat.

(c) A fin malalignment force component, acting normal to the

relative velocity vector; equal to the fin 1ift caused

7




by the malalignment angle, multiplied by the sine of the
roll angle.

(d) A fin malalignment moment, obtained by multiplying the
fin malalignment force by the cosine of the angle of
attack, to obtain the component normal to the rocket
axis, then multiplying by the distance from the rocket

center of mass to the center of pressure of the fins.

é;g The calculations using the rigid body equations take much more time
than those using the particle equations. The equations are more complex, and
a shorter integration step interval must be used. Where the particle equation
computation may be stable and sufficiently accurate with an interval of one
second, the rigid body equation computations require integration intervals as
small as .0l or .02 seconds to maintain stability and accuracy.

To save time, in Programs 2, 3, and 4, when the rocket oscillations
damp out so that the angle of attack is negligible, the equations are auto-

matically changed from rigid body equations to particle equations.

1.9 In Programs 1 through 4, the motion can be computed by a closed form
solution when the rocket is in vacuum (above 300,000 feet) and has no thrust.
The only force in this case is an inverse square gravity. The two points com-
puted in this manner are pesk and atmospheric re-entry at 300,000 feet on the
descent. The closed form solution is optional and is used for time saving

when detailed trajectory above 300,000 feet is not wanted.

1.10 The Three-Dimensional Particle Trajectory with Curved Earth Progrmn'

contains equations for description of:



(a) The earth's surface, which 1s described as an ellipsoid of revol-
ution.

(b) The earth's gravitational field which is described by an ex-
pansion in terms of zonal harmonics up to the sixth harmonic.

(c) The effects of the earth's rotation; the Coriolis and centri-

Tesseral harmonics (variations with longitude) and the effects of
local irregularities of the earth's surface are not included in the equations.
For this reason the gravitational force as computed for any specific point on
the earth's surface may not agree exactly with the force as measured at that

point.

1.10.1 The Curved Earth Program was designed to provide:

(a) Impact displacement caused by Coriolis force effects.

(b) Height above the earth's surface, rather than a Car-
tesian vertical coordinate with respect to the launcher.

(c) Impact locations on the curved earth surface, rather
than on a Cartesian plane tangent to the earth at the
launcher.

(d) An accurate description of long range free flight rocket
trajectories.

1.10.2 The force equations contain:

() Gravitational and rotational forces as discussed in 1.10

i above.

(b) Thrust force, acting along the velocity vector in three
dimensions.

(¢) Drag force, acting opposite to the velocity vector.



2. The General Program

The five programs under discussion are special cases of a general trajec-
tory program. The rocket equations in each of £he five are used as sub-routines
for the general program. The efficiency and utility of any trajectory simulation
are established by the logic of the general program; and the programming of this
logic is the most critical task in writing a simulation program.

The major components of the general program are described below.

2.1 The integration routine used is the Runge-Kutta fourth order method*

in which, given a set of n differential equations
:‘ci=f1(xj,t) i, 3=1,2,3, . . ., n
with the initial conditions
Tos %i0»

the solution at the end of a time interval At is computed by the equations

kip = At £y (xjo, to)
kip = At fy [(xjo + 1/2 kj1), (to + 1/2 At)]
ki3 = Aty [Gego + 1/2 ko), (b6 + 1/2 Av)]

¥Reference 1.
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ki3 = At £y [(on + k33), (o + At)]

X4 (to + At) = Xi{po + (l/6)(kil + 2Ky + 21{13 + ki)-l»)‘

2.2 The integration routine has a provision for testing to find whether

the At used is adequate. This test is made every q iterations, where q is

12

(e)

(a)

(e)

(f)

an be get in advance. The test is as follows:

The interval At is cut in half, two iterations are computed
and the results stored.

The interval At is restored to its original value, one itera-
tion is computed with the original starting time, and the results
stored.

For each variable x; being integrated, the value obtained from
(a) is subtracted from the value obtained in (b), and the dif-
ference divided by the value obtained in (a).

Each quotient so obtained 1s the relative error in the Xy, due
to use of the time interval At. Each quotient is compared
against a tolerance T, and if any quotient is greater than T,
the time interval for integration is set at At/2, and the pro-
gram proceeds. The tolerance T is a constant of the program
which can be set in advance.

If all quotients obtained in (c) are less than T, another itera-
tion is performed using the time interval At, and the results
stored.

The time interval is set at 2At, and one iteration with the

original initial condition is performed and the results stored.



(g) For each variable Xi, & relative error is obtained between the
values obtained in (e) and those obtained in (f), and each of
these errors compared to T.

(h) If any relative error is greater than T, the time interval is
set at At, and the program proceeds.

(1) If no relative error is greater than T, the time interval is
set at 2/t and the program proceeds.

The preceding computation is necessary to insure the time interval

used will not be too small for efficient computer use, and not too large for

stability and accuracy;

g;i The time discontinuity control in the general program is governed by

a table of times of functional discontinuities including

(1) stage separations

(2) Rocket motor burnouts and ignitions

(3) Abrupt changes in slope of the thrust curve

(4) Payload separations.
Al]l time function tables contain double values at discontinuities. Before
each integration step, the program tests whether the integration interval will
contain a discontinuity time. If not, the program proceeds, using the same
At. If the interval contains a discontinuity, At is reduced to a value which
makes the end of the interval coincide with the discontinuity. The first set
of the double tabular values are used to compute the function values at the
end of the interval.

For the next computation after a discontinuity the time interval is
automatically reset to a programmed value and the second set of the double tabu-

lar values are used to compute the function values at the start of the interval.

13



The program also automatically selects the appropriate rocket func-

tion tables to use after each discontinuity.

g;&_ The altitude discontinuity control in the general program includes
a table of altitudes of functional discontinuities including

(1) Launcher exit

(2) Wind strata boundaries

(3) Atmosphere boundary (300,000 feet)

(4) Impact.

At the end of each integration step, the program tests whether the
integration has included asn altitude discontinuity. If not, the program
proceeds. If so, linear interpolation of time vs. altitude is performed to
obtain a new value of ZXt, and the integration step repeated. Since time
vs. altitude is generally not linear, the recomputed altitude will not fall
exactly on the discontinuity. The process of testing, interpolation and re-
computing is repeated until the altitude at the end of the interval is within
a small preset tolerance limit of the discontinuity. The action taken depends
on the nature of the discontinuity.

(l) At launcher exit, the rocket equations of motion are changed

from launcher-constrained to free-flight equations.

(2) At wind strata boundaries, the wind function values are changed.

(3) At atmospheric exit, the equations are changed to those for

motion in a vacuum; and at re-entry, they are changed back.

14



(4) At impact the program halts, initial conditions for the next

trajectory are established and the program started.

2.5 The general program contains a table look-up routine and storage for
all tabular values of rocket functions. The format for tables is the same for
all programs. The table look-up is a linear interpolation.

The functions of time (thrust, mass, center of gravity and moment
of inertia) are tabulated sequentially for the entire trajectory, with double
entries for discontinuities.

The table containing thrust vs. time is a multiple entry table, list-
ing in separate columns:

(a) sea level thrust

(b) exit nozzle area (zero when thrust is zero)

(¢) time of next discontinuity

(d) code number (1 through 4) to indicate which aerodynamic tables

are applicable.

The aerodynamic tables are functions of Mach Number and include aero-
dynamic coefficients, reference areas, and centers of pressure. Each table is
a multiple entry table, containing four sets of values of the dependent vari-
able. Each set of values applies to one phase of the rocket trajectory. For
example, for a two stage rocket three sets are used--boost phase, second stage
coast and second stage burning. Selection of the phase is a time function,
controlled by the code number in the thrust table.

Atmospheric functions are tabulated vs. altitude. The functions,
speed of sound and atmospheric pressure, are condensed from Tables IV-A and

IV-D of Reference 2.

15



3. Employment of the Programs

The programs are used for obtaining a performance evaluation, wind func-

tions, and/or dispersion analysis.

3.1 Performance evaluation is the basic use of Programs 1, 2, and 5,
and can be used to:

(a) Study feasibility of rocket desizn.

(b) Test sensitivity of performance to changes in configuration.

(¢) Provide parameters for other studies including heat transfer

and instrumentation environment.

(d) Provide a standard for wind and dispersion studies.

(e) Provide knowledge of the probable flight‘path of a rocket.

For performance evaluation Program 1, which requires a small number
of input parameters and less computation time, is the most economical. Pro-
gram 2, however, provides rigid body data and more performance characteristics
if valid input is available. Program 2 must be used initially if launch is
from a zero-length launcher.

The performance of a particular rocke: is considered a function of
its payload, launch angle and flight time, and is characterized by parsmeters
including range, altitude and velocity. A description of a rocket's perfor-
mance 1s obtained by choosing values of these parameters at selected flight

events (burnout, peak, impact, etc.) for various launch angles and payloads.

17



The performance characteristics are converted to the proper units and
tabulated against suitable variables. Common performance tables are: Range

to Impact vs. Launch Angle and Range to Impact vs. Payload.

3.2 The wind functions, wind weighting function and unit wind effect,

are obtained from Programs 2 and 3.
The wind weighting function, f (z), is obtained by computing trajec-

tories (Program 3) through wind layers of increasing height, z,, up to a
limit of usually 100,000 feet altitude. A constant wind, Vy» acts within
each layer. The computing technique does not run all the wind layer trajec-
tories from launch, since this would be costly duplication of segments of
trajectories. The trajectory is computed to the top of the first wind layer
and initial conditions are stored, then the trajectory is computed to impact.
The computer then takes the stored initial conditions and computes to the
top of the next layer, stores new initial conditions and computes to impact.
The process iterates until the last wind layer top is reached. The resulting
impact ranges are compared to the Program 2 impact range and a wind weight

value is calculated for each wind layer heighth after corrections for drift.

Wind Weighting Function (f (z)) =

Displacement of impact due to wind to alt. z
Displacement of impact due to wind to alt. 100,000 ft.

Experience has shown the wind weighting function to be nearly inde-
pendent of launch angle and payload, so usually one set of wind layer trajec-
tories at a nominal launch angle and payload vill be sufficient for each

rocket.

18



The unit wind effect, &(0), is obtained by computing trajectories
(Program 3) with wind to maximum altitude (usually 100,000 feet) over a
range of launch angles, and comparing impacts obtained with those from Pro-

gram 2.
8(6) = (Range to impact with unit wind to maximm altitude)
- (Range to impact with no wind).

The unit wind effect varies with payload, making it necessary to
compute 3(0) for at least the maximum, minimm, and nominal payloads.
Actual wind profiles can also be used in Program 3 to obtain impact

predictions and study rocket response to high velocity wind and wind shears.

3.3 The dispersion of unguided rockets due to atmospheric effects and
deviations from design criteria is estimated using Programs 1, 2, 3 and 4.
The perturbing influences are listed below in "rough order" of decreasing

effect:
(a) Thrust malalignment on each stage
(b) Wind uncertainty
(¢) "Tip-off" (initial pitch rate at separation from tower)
(d) Launch angle uncertainty |
(e) Second stage ignition time variation
(f) Thrust variation
(g) Drag variation
(h) Payload uncertainty

(1) Fin malalignment on each stage.

19



The tabulated factors make the largest contributions to dispersion.
Perturbations caused by center of thrust, coefficient of 1ift, and center of
pressure variations have small effect on the trajectory and are not usually
considered in dispersion studies.

Each dispersion factor is varied independently. The unit range ef-
fect due to each factor is multiplied by the estimated probable deviation to
glve estimated dispersion. Two estimated dispersion tabulations are derived,
one for range and one for cross-range. Where the perturbation is known to
have cross-range effect, the magnitude is assumed equal to the range effect.

The total dispersion is calculated for range and cross-range by

finding the square root of the sum of the squares of the estimated disper-

slons.

g;ﬁ_ The operational flow insuring the most economical route to obtain-
ing the desired performance evaluation, wind functions, and/or dispersion
analysis 1s shown in Appendix III.

Three basic tasks must be completed before any simulation computation

can begin:

(a) The simulation plan, which outlines the number and types of
computer simulations necessary for the planned operation, must
be approved ﬁy the client.

(b) The client must supply the input parameters necessary for the
operation or approve applicable parameters that PSL has avail-
able. A list of required input parameters and tables is included
in Appendix II.

(¢) The client must supply the estimated probable deviation (3¢

values) of the dispersion factors.

20



L. Force and Moment Equations

The vector and matrix notation used throughout the balance of this report

is defined in Section 9.

L.1 Newton's Second Law applied to a rigid body is

4 (MRI) - gF" b1
dt

M Mass of the body

ﬁI Velocity of the body in an inertial coordinate system

ZfI Sum of the external forces acting on the body, resolved

in the same inertial system.

If the reactlion effect of the rocket motor is written as one of the

forces, equation (U-1) as applied to a rocket is*

MR T = 6T + T4+ AT 42
ﬁﬁ; Inertial acceleration of the rocket
MG Gravitational force
-
T Thrust or reaction force

*Reference 3, Chapter I.

21



K Aerodynamic force

If g4 is a ground fixed system and [CiJ] is the transformation matrix

between the inertial system and 81>
ng = [CiJ] -ﬁmI + ﬁlg

as defined in 9.2.3.. From (9-l6), with &; = O, the acceleration in the ground

system is
-ﬁmg = [ci{]] ﬁmI - 2;8 x ﬁmg x w8 x w8 x [cij] ﬁmI
= [Cij] ﬁmI"' ?+ 6

; Angular velocity of the earth

-

C Coriolis acceleration
’ -

C Centrifugal acceleration

T6 = - 38 x 384 [ogy] BT

Substituting (4-2) into (4-3) yields

..
=

il/T [cij] (Mel+ 7L+ 2T) 4 pe 4 T8

L (Te+ 28) + GE+ 28 + T8. by
M

4.2 Equation (L-4) i1s the form of the force equation used in the particle

trajectory programs. The ground fixed coordinate system used is the 4?1 system

defined in 8.6. Equation (L4-U4) becomes

e2



wl
Rm —}'

—M(ﬁj+i’2)+51+@1+61. 4-5

With the particle assumption of zero angle of attack:

74 _ |p| 3,4 46
PSRN ITE- 3 47

As defined in 9.1.3 ;ﬁxﬂ is the unit vector in the direction of ﬁﬁ”!.
The magnitude |T| is discussed in Section 5 and the magnitude |A| in Section 6.

o - _\j
The vectors G, € , C are lumped into an earth force vector, E

€ .34, 84,374

4.8
In Programs 1 through U4,
2
4 R -
X - g, (___0_7_>13 4-9
Ro + 2
A A
go Net acceleration due to G + C, on a stationary particle
at the launcher
Ro Geocentric radius vector to the launcher
znfz Height of rocket above launcher (paragraph 9.1.2).
=24
The vector E for Program 5 is derived in Section 7.
4.3 In the rigid body trajectory equations, the forces are resolved in
a body fixed coordinate system by (Figure 4-1). The equation relating body
coordinates to the A4 coordinates is
A R4
RD = [aij] Ry - 4-10

23
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The velocity relationship is
which can be written

“b
A vector V" is defined:

\-;b = {aij] :ﬁmj. L-.11
?b is the launcher system velocity vector rotated into the body system. It is
not the body system velocity ﬁt’. However, it is a perfectly legitimate vector,
expressed in the body system, and its components can be differentiated in the b3

system. From (9-18) and (9-38)

i';b = [aij] ﬁlmj + [é‘ij] ﬁm L.12

Using (4-11)

L [&ij] %mj - wPx VP 4-13
From (4-5) and (4-10)

[9‘13] T.“m'z =% (TP + &%) + BP b1k

;—f\b=%‘(i“b+7§b)+§b- P x TP, 4-15

This is the equation to be used in computation. The forces will be

-

resolved into components in the body system; VP° computed by equation (4-15) and

2L



integrated once to find V°; V" rotated to obtain Ry~ and integrated to obtain
4

Ry

This system is convenient because \—/}b is the velocity used in aero-
-

dynamic calculations. Computation of i‘»b and AP are given in Sections 5 and 6.
Y

EP is

-
o
Fo]

b_r. 134
Bk

and E\'Z is given by (4-9).

4.4 The relative orientation of the b; axis and .£; axes are shown in

Figure L4-1 with an outline of the rocket superimposed.

FIGURE L4-1
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The b; system has:

Origin at the rocket center of gravity (c.g.)
f by along the longitudinal axis of the rocket
b3 normal to by in the pitch plane.

The transformation of a vector between ji and by is

7P = [RQ (B - 1r/2)] 4. 4-16

The rocket is considered to be constrained to move in the by b3-plane,
which is coincident with the jl /3-pla.ne. Force components in the by or /2

directions are defined to be zero.

4.5 The moment equation for a two-dimensional rigid body reduces to a

scalar equation

Ip wp+ Ip wo = 2 Mp. ba17
I» Body moment of inertia about the by axis and 1s discussed
in 5.4,
wo Angular velocity of rotation about the bp axis and is
equal to B .
2 Mo Sum of the moments about the bo axis.

The moments due to thrust are discussed in Section 5 and those due to

aerodynamics in Section 6.

The moment equation is used in the form

B = = (ZMp - izﬁ.’)- 4-18
Iz
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5. Rocket Functions

5.1 The thrust force magnitude is defined as¥
It| =T, (t) + Ag (Pg - Pp) 5-1

where Tg (t) is the sea level thrust of the rocket motor vs. time. The term
Ag (Pg - Py (h)) 1s a pressure differentiel correction. A is the rocket exit
nozzle area. Pp (h) is the ambient pressure, the atmospheric pressure at the
rocket altitude h; Pg is sea level standard atmospheric pressure.

The form of the thrust vector equation used in the particle trajectory

equations is given in (4-6)
T4 o |7 . 46
The thrust vector equations used in the rigid body Programs 2 and 3 is
TP = |1] By 5-2
and in Program 4 the malaligned thrust vector is
TP |T) (31 cos € +=52 sin e cos @ +:53 sin € sin @).

. -
Figure 5-1 shows the geometry of the malaligned thrust. The thrust vector T
acts, at the center of the rocket motor exit plane, on the by axis a distance

- -
Ry from the c.g. The angle between ? and by is €, and the plane containing T

*Reference 3, p. 10.
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rotates around gi as the rocket rolls. The roll angle @ is defined as the
angle between the b] bo-plane and the plane containing f. Since € is very

-
small and the Sé component of T is neglected because of the two-dimensional

constraint, (5-2) is used in Program U4 in the form

TP = |T (ﬁi +¢€ sin @ fé) 5-3

b,

b,
FIGURE 5-1

with € expressed in radians. The moment due to thrust is

Y

MTb = ﬁTb X "]-:" . 5"2*
The vector ﬁTb is

= 3 b -

RT = -RTbl. 5'5
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Using (5-5) and (5-3), (5-4) reduces to
ﬁfb = |T|€Ry sin @ ﬁé. 5-6

2.2 The thrust force and moment defined above is the reaction force for
& non-pltching rocket. Another force and the resulting moment, termed jet
damping, are caused by the reaction effect if the rocket is pitching. Figure
5-2 illustrates the effect. If the rocket had no pitch angular velocity, the

Jet gases would have a velocity vector ?ﬁ with respect to the rocket, with
- —
Vg = -|Vg| b1

and the resulting reaction force would be

Y . -
Fg = -M |Vg| by

M 1is the mass rate of flow, taken negative. If the rocket is pitching with an

angular velocity'B , the exhaust velocity is
N Y R N
Vg' =Vg +3 Ry b3

and the reaction force is

Far = M (|Vg| By - B Ry B3).

- - -
The component of Fr: in the by direction is included in the T vector already
-
considered, and the component in the b3 direction 1s the reaction due to Jet

damping. The moment due to Jjet damping is

- >

Mj R‘I‘ X (MB'RT §3)

M8 (Rp)? Dy 5.7
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FIGURE 5-2
The last term in equation (4-18) is sometimes included in the Jet

damping equation*.

2+:3 The mass function of the rocket has two types of variation; mass de-
crease due to motor burning, and mass discontinuities due to stage separation
and payload ejection. The mass decrease due to motor burning is set up as
follows:

The data availsble is:

Mt Mass of rocket at motor ignition tt
Mp Mass of rocket at motor burnout tb
T Sea level thrust vs. time

]

Assuming that the mags flow rate is proportional to thrust:

M=k T,
tp . tp

j Mdtz-kg T, dt = -J. 5-8
t1 tr

*Reference 3, pp. 19-23.
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then

J Total impulse

My -
kK = - M-

J
t .
M (t) =MI-J M dt
ty
t
= M +kSt T, dat. 5-9

5.4 The center of mass of the rocket is computed from the relationship

M (c.8.7) + Mo (c.g.»n)
C-g.l,g = 1 1 2 2 5-10

M+ M

for any two components of the rocket

from

M, Mé Mass of each component

.th
Cegeq Center of gravity of i°® component (1 =1, 2)
c.g.l)z Center of gravity of the combination.

The moments of inertia are computed by the parallel axis theorem

2
I120=M (c.g.q - c.g.l’e)2 + My (c.gep - c.g.l,z) +I; +Ip 5-11

Il’ I2 Transverse moment of inertia of each component about its
c’g.

Il,g Transverse moment of inertia of the combination sbout
c.g.l’e .

31



Data usually furnished for each stage are:

(2)
(b)
(c)

(a)
(e)

Ty ve. time

Mass with no fuel or payload
Fuel mass

Dimensions

Payload mass.

The mass, c.g. and I data vs. time for each stage are computed using

equations (5-9), (5-10) and (5-11), with the empty vehicle as component 1, and the

fuel as component 2. The time is referenced to ignition time, and the c.g.

location to the motor exit plane.

The stage data are combined, two at a time, using first stage ignition

time as reference. The resulting single table of Ty, M, c.g. and I vs. time

from first stage ignition is used in the simulation program.
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6. Aerodynamic Forces

A.1 Drag and Tift

- S
The Drag and Lift force vectors, D and L, are defined in a relative
wind axis system, which in two dimensions is (wl, w3). The axis Gi is dir-

ected along the vector

Vg =V-# 6-1
Vﬁ Velocity of the rocket relative to the moving air mass
V' Velocity of the rocket relative to the earth
W Wind velocity relative to the earth.

The axis ;é is normal to ;i in a right handed sense, and lies in the
plane defined by Gi and fi. The angle between ﬁi and ;i is the angle of

attack a .
a = cos™1 (31-;i). 6-2

In two dimensions, the transformation of any vector A from wind axes

to body axes is
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Figure 6-1 shows the £, b; and w; axes, with the T and D vectors.

The drag force is

The 1lift force is

34

1

D=-|p| W 6-4
|P| = aa2 cp 6-5
q=7/2 PAPE

m = VR/VO

Dynamic pressure

Ratio of specific heats for air (1.41k4)

Atmospheric pressure as a function of altitude

Mach number

Speed of sound as a function of altitude

Reference area of the rocket

Drag coefficient.

T=- |z ?é 6-6

CL = CLa sinag cosa .



FIGURE 6-1
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CL Lift coefficient with no fin malalignment

) Cp a Derivative of the 1lift coefficient with respect to @

evaluated ata = 0,

In the programs under discussion Cp and CLa are functions of mach

number only, and are obtained from tabular functions
Cp = Cp OM).
c, =Cra (M).

T and D act at the center of pressure location (c.p.)

c.p. =c.p. (Y.

.2 In the particle trajectories a is defined to be zero, the wind

axes w; coincide with b; and CL is zero. The aerodynamic force is

N
A

-|D] T”.1

S
A

-qd? ¢y, ?M"?. 6-8
In Programs 2 and 3 the 1lift and drag equation is
Z=I°4+DP- -qd® ((Cp cosa - C, @ sin® @ cos a ) .‘;l

+ (Cp sina + Cpa sina cos2aq ) 5\3) 6-9

The 1lift force due to fin malalignment is considered to be independent

of the rocket angle of attack and equal to

Tpu” = -|LF| (W3 sin @ + W, cos §). 6-10
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¢ 1s the rocket roll angle as defined in 5.1.

The rocket is considered to be constrained to move in the by, b3—

plane and (6-10) simplifies to

LFMW = ~-Lp sin g w3 6-11
ILy| = qa? Crar 87 6-12
CLaF The derivative with respect to a of the 1lift coefficient

of the fins alone
SF The angle of malalignment of the fins.
In Program 4 the 1ift and drag equation is

- _x‘b

A=1 b

A'b -
+ D" + LFM
= -qd® ((cpeosa - (Cp, sina cosa + CLeqy Oy sin @) sina) T;l

+ (Cpsina + (Cp 4 sina cosa@ + Cp oy 3y sin §) cos a )"33)
6-13

6.3 The moment due to lift and drag in Programs 2 and 3
b _
ML,D = RP x (L + Db) 6-14
— b -—
Rp® = -|Rp| by
Rp = c.g. - c.p.
c.g.(t) Center of gravity distance from motor exit plane

c.p.(M) Static center of pressure distance from exit plane.
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In Program 4, the additional moment due to fin malalignment is

MFM~ =Rpp  x Ly 6-15

-l

b
Rpy

'IRPF| by
Rpp= c.g. - c.p.f.
c.p.f. Center of pressure of fins.

_;E In addition to the 1lift and drag forces and moments, which are func-
tions of angle of attack, a pitching rocket experiences a pitch damping moment.
Figure 6-2 i1llustrates the situation for a rocket with relative velocity Vﬁ,
angle of attack ¢ and pitch rate B . The center of pressure of the tail is
at ~xp from the c.g. and is moving in the b3 direction with a velocity xTB,
so that the tail "sees" an angle of attack which 1s approximated by
xg B

VR

aT=a +

The 1lift force on the tail is

.;—‘ .s—‘ XB -
Tp® =TpP (@) - aa? crgq = p3-

The second term on the right is a 1ift due to pitch rate. The tail

surface contribution to moment due to pitch rate is
=~ B ) 23...
MBT = -qd CLa T XT T§b2'

Similarly, the nose contribution to moment due to pitch rate is

-

. 2 o B =
M = -qd~ C XS =— bo.
T La N *N 2
B Vi
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FIGURE 6-2
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The contributions of all aerodynamic elements can be summed to

produce
-— N 2
M5 = -qd o
B a VR

.E CLq 4 xiQJ B 3, 6-16

In Programs 2, 3, and k4, ﬁﬁ is computed by

jc
.
li
|
N
[4
>
H

. 6-17

The assumption that pitch damping moment , ﬁg » is entirely caused by the tail

surfaces is Justified for fin stabilized rockets with large stability margins.

Lo



7. Earth Forces

|

i The set of equations used in Program 5 describe very accurately the gravi-
tational force of the earth and the centrifugal and Coriolis forces caused by
the rotation of the earth. The force equations are derived in this section.

The coordinate transformations used are described here, and derived in Section 8.

7.1 The effective force exerted by the earth on a body of mass M, as ob-

served in a coordinate system g4 fixed with respect to the rotating earth, is

hﬁg=M{E€-2aigx%g)-(ng(ag x 38)) 7-1
M Mass of the body
.E. Gravitational scceleration
@ Angular velocity of the earth
ﬁg Velocity of the body in the coordinate system fixed
with respect to the earth
;g; Position vector of the body with respect to the center of

the earth
-5 -1
le = 7.292115851 107 rad. sec.

The term -2 (@ & x P8) is the Coriolis acceleration , and -w8 x (W& x 58)

is the centrifugal acceleration C.
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7.2 The earth's gravitational potential at a point with geocentric coor-

dinates (P , % , A ) as defined in (8-2) is given in Reference L as

k.2 Jo a2 .
$ = ——=— Pmla' {l+;2——;-2(l—351n2 L)

Jo &2 . 2 L
+_3_3.2p (3-58in“ &) sin L.

:T_LL.iﬁ (3 - 30 sin® + 35 sin* L)
8 P

2‘15.:_5 (15 - 70 sin L + 63 sin* & ) sin &
8 pr

ﬂé%f (5 - 105 sin®& + 315 sin®& - 231 sinlL ). 7-2
16 P

The terms with coefficients J2 to J6 are the zonal harmonics and give the
effect of the equatorial bulge. The terms with coefficients J3 and J5 take
into account the asymmetry with respect to the equator as computed from satel-
lite 6rbit perturbations. The potential is symmetric with respect to the
polar axis, so no terms in A appear. Local irregularities, such as continents,
mountains, and oceans are not considered, and the gravitational force computed
from (7-2) for any specific point will differ slightly from the force measured
at the point.

Rewriting equation (7-2) yields:

2 2
f:k_c%.a_[l-t-k(;e <-;—) (1 -3 sin®L)

+ k

32 2
G3(%) (3 -58in° &) sin o

i
kGh(.%..) (3 - 30 sin? 2 + 35 sink 2 )

kG5(;’ai_)5 (15 - 70 sine.f + 63 sinh,,(’ ) sing

+

6
kG6 (Pi) (5 - 105 sin2 L+ 315 sinh' L - 231 sin6of‘_)-]

-3
L2



kg, = -32.146L8k Tt/sec.?

a = 20,925,645 feet

kG2 = ,00054114
kG3 = -.00000115
kg), = --000000265
kG5 = -.000000025
kg = 0000000625

7.3 The gravitational acceleration caused by ¢ is
G=-A& . -4

The vector G (M), the gravitational acceleration at a point M with
geocentric coordinates Py Ly A M is evaluated in a Cartesian coordinate

system m; with:

Origin at M

§3 directed along the radius vector from the center of the
earth to M

1?12 in the meridian plane of M.

Evaluating the gradient operator of equation (7-4) at the origin of the my system

yields
30 1 29 = 1 99 > 99 > 75
P ycos L1 DA Ml PMaosz ar |m 3
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In the notation defined in 9.1.2,

- m = m=> m..\
‘Gl m1+G2 m2+G3 m3-

From equation 7-5, the components of Em at the point M are

Glm= -1 o9 -0
Pcos & OA
om_-1909
v
29
¢t =- 2.
3 3P

Taking the indicated partial derivatives of ¢ from (7-3) yields:

2 2
m _ 2 2 :
G," = kg oo [+kG2 e (6 sind y cos o )

3
+ kG3(—N;) (3-15 sin® oZ"M) cos oL”M

p
o L
+ kg, (7}? (60 sin &, - 140 sin3 &) cos &
a 2 L
- Xgg (7;,;) (15 - 210 sin2oc"M + 315 sin” & ) cos &
a 3 p)
+ kge (75_1\4.) (210 sin o\ = 1260 sind & + 1386 sin’ &£ ) cos af@

7-6
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2 2

20 sin° M) sin &

3
&
- kG3 ('p-"") (12

oy () (15 - 150 sin® o2 M+ 175 sint & ")

420 sin2 q + 378 sin% sin &

>
+ kg (-pa—M) (90 )

. 6
+ kg (7—) (37
M

7.4 The centrifugal acceleration C in the m; system is

m - pu. 3 —
T =-wlx wlyx p Mm

-

—c:m=[wlcosf M32+lw|sineme3

/;M Distance from the center of the earth to M.
In component form
-1 -

C" =™ my + CoR mp + C3® my

using (7-9) and (7-10) in (7-8) ylelds the components:

735 sin®L M + 2205 sino M - 1617 sin® & M):"

-7

T-11

L5



C3m = 2 Pu cos? &£

w

M® T-12

7.5 Under the combined gravitational and centrifugal forces, the earth

has assumed a shape normal to the resultant of G + c. This shape is very

nearly an ellipsoid of revolution. The internationally adopted dimensions are*

i}

Semi-major axes a =b = 20,925,647 feet

20,855,497 feet

Semi-minor axis c

il

Flattening a-c¢_.__1 .
a 298.3

The equation for any point M, with centric coordinates P Mt &L Mt on the sur-

face of this ellipsoid is

. PMI = &
14k sin? £ o

where 5 5
k =& =S - .00673852.

7.6 The combined vector G+ C is the plumb line direction HY, and is
transformed into the .¢ 1 System by the transformation derived in 8.7. Then
the Coriolis acceleration -E is computed by |

TN .1]

where

w [cos L1 4 o + sin Ly, ./3:|.

The earth force vector in the £ ; system is

mff:m[gf +§’]

*Reference 4.



The earth force vector in the ‘[i system is
- S 8
ME/=M[:C’[+H]

and in the fi system (paragraph 8.9) is

hﬁ:‘f*—'M[Re (a f - 90°)J E

£

7-13

T-1k4
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8. Coordinate Transformation on the Esrth's Surface

8.1 Trajectory data are computed by Program 5 in a Cartesian system .¢ 3
-~

with origin at the launcher and with the # , /p-plane normal to the direction
of a plumb bob at the origin. Three types of coordinate transformations which

are used in the computation of data in Program 5 are listed below.

8.1.1 The atmospheric data used in the program are tabulated as

functions of height above the sea level surface of the curved earth. In order
to use these data it is necessary to compute the height of the rocket, given
the rocket coordinates in the A?i system. 1In addition, the data on a long
range trajectory are often more meaningful when the rocket position is given
in terms of latitude and longitude on the earth's surface. These three coor-
dinates--latitude, longitude and height--are termed geodetic coordinates.
Geodetic coordinates are described in terms of the geometry of the earth in
Section 8.3. The transformation from a Cartesian system such ag 4’1 is accom-
plished by using geocentric coordinates as an intermediate step. Geocentric
coordinates are geometrically described in Section 8.2. The transformation of
data from the A?i system to geocentric and then to geodetic coordinates is

derived in Section 8.6.

8.1.2 The equations which describe the gravitational force field of
the earth and the centrifugal and Coriolis forces due to the rotation of the

earth are easily derived in a Cartesian coordinate system my with:
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Origin at the rocket position

m3 axis in the direction of the geocentric radius vector
mop m3-
plane co-planar with the meridlan plane of the rocket.

The transformation from the -€, system to the m; system is given in 8.7.
'S

§;};§_ It is sometimes required to give the rocket trajectory data
in a Cartesian system t4, with origin not located at the launcher. In general,
this coordinate system will have the t, to-plane normal to the plumb line
direction at the origin. The transformation from the A?l‘system to the t3

system is given in 8.8.

§;g Geocentric spherical coordinates are shown in Figure 8-1. The origin
at the earth's center is point C; the polar axis is CN; the reference (Green—
wich) meridian is the arc AN; the local meridian is the arc BN. The geocentrie
spherical coordinates of a voint M are P M’A M L M- P y 18 the magnitude of
the radius vector from the earth's center to M. ADM is the geocentric latitude
of M, and is the angle between the vector P y and CB, the projection of P M
on the equatorial plane, measured positive north from the equator. I\M is the
geocentric longitude of M, and is the dihedral angle between the local meri-
dian plane and the reference meridian plane, measured positive west. The
solid arcs on Figure 8-1 indicate a geocentric sphere with radius the semi-
major axis of the earth, a, and the dotted lines indicate the relationship
of the earth's surface to such a sphere. The earth's surface is considered to
be an ellipsoid of revolution with semi-major axis, a, and semi-minor axis c.

Section 8.4 gives the dimensions adopted.
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§;§ Geodetic coordinates are coordinates which are measured with respect
to the earth's surface. Geodetic height is distance from the sea level surface
in the plumb line direction. The plumb line direction at any point is the
direction of the resultant of the gravitational and centrifugal forces at that
point. Strictly speaking, the sea level surface is the geometrical shape
which at any point is normal to the Plunb line direction at that point and coin-
cides with the average position of the surface of the oceans. The sea level
surface 1s approximated by the ellipsoid of revolution defined by equation (8-1).
Geodetic coordinates are shown in Figure 8-2. The surface ADN' is tﬁe octant
of the‘ellipsoid. C is the center of the earth, N' the north pole; the arc AN'
is the reference meridian and the arc BN' the local meridian. The point M' is
the foot of the perpendicular from M to the ellipsoid. The geodetic coordin-
ates of M are Hy, Iy, A M+ The geodetic height HM is the length of the line,
M'M; the geodetic latitude, Iy 1s the angle between the equatorial plane and
the extension of M'™; and A.M, the longitude of M is the same in geocentric

and gecdetic coordinates.

8.4 The earth's surface is defined* to be an ellipsoid of revolution with

a = 20,925,647 feet
c = 20,855,497 feet
8 -c¢ _ 1 .

& 298.3

The equation for this ellipse can be written

P = 8 8-1

~/1+k sinz.f

*Reference .
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where

=
[}
!

= .00673852.

8-2

8&,,

MI

SL

FIGURE 8-3

8.4.1 Figure 8-3 shows both geodet

points M and M' in the local meridian plane.

and geodetic latitudes of M' is & Ly

SLM":LM —aZoMl'

ic and geocentric coordinates of

The difference between geocentric

The difference between the geocentric latitudes of M and of M' 15 & & M

5k

SLy =Ly - Ly



A general equation for 8§« in terms of ‘X and L is used to show the relation
between geodetic and geocentric coordinates.

Figure 8-4 illustrates the geometry by which the equation for
3 Lp can be derived. P 1s any point on the surface of the ellipsoid and the
arc AA' is a segment of a geocentric circle with radius £ (£Lp). 8 Lpis the

angle between SS' and AA' at P. From the figure

lim -aP
tan & LP =
8 —0 PPAE

__;L__ lim -aP
pp s~ 0 B

1 (ﬂ>
P af !
P P= Pp

Taking 4P /d in equation (8-1) and dividing by P yields

k Sinoio P cOs dpP
l+k sin2 2 P

8-L4

tan8 Lp =

or

tand L = K sin & cos &
1+k sing‘,f

for any point on the surface. To find & L as a function of Llet £ =L - & L in
(8-4)

k sin (L - 8 L) cos (L - 8 L)

tan 8 L = . 5
1+k sin® (L - § L)

and by trigonometric identities

k T
sin 2 5L sin (2L - 281L)

2
1+ cos 28 L 14+ g (1L - cos (2L, - 231L))
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Expanding the right side in terms of sine and cosine of 2L and 28 1L, clearing

fractions and collecting terms in 2 81 yields

tanSL:kmnIﬁMCOSIM- 8-5
1+k cos2 I‘M

8.5 Given geodetic coordinates of a point M, (Hy, Ly, A y), to find the

geocentric coordinates (P y, & y, A y), compute

SLMt - tan-1 k sin Ly, cos Ly
1+k cos? lM

azom'=I-M“8I-M' 8-6

P M] = a . 8-1
14k sinll M!

From the triangle MCM' in Figure 8-3

or
PM .—.-\/(PMI + HM cos & LMt)2 + (HM sin O LM')2
in &
Sy = sin-1 [ DR OLy: | 8-8
Ru
Ly = oLly+ Ly - 8-9
8.6 The problem of transformation stated in 8.1.1 above is restated
below:

Given a Cartesian coordinate system !3_, fz, 13 defined as follows:

o7
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R

Origin

jl 12—

plane

Find the geocentric
The
problem of defining

8-5 shows that

P1r

at L, with geodetic coordinates Hy, Ly, Ag

normal to the plumb line direction at L'

axis positive east

axis positive up, along the geodetic vertical through L,
and given the coordinates of a point, M, with respect to

L, defined by the vector ﬁgé

Ny 2
*n

- 1 -
Ry n

}1 + ym’e L5 + z 3 8-10

and geodetic coordinates of M.

problem of finding the geocentric coordinates of M is the

the vector f’M from the center of the earth of M. Figure

—
PM=RID. +H1+ PLI 8—11
vector from L to M

vector from L' to L, where L' is the foot of the perpendi-

cular from L to the earth ellipsoid

vector from the center of the earth to L'.

To use equatiOn(8—ll)the vectors must be referred to a common coordinate system.

For this purpose, define the Cartesian system cy
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Origin

at the earth's center C

€1 c2-
plane the equatorial plane
?3 along the polar axis, positive north
‘chg in the plane of the reference meridian.
Then
lle coOs ofM sin AM
ﬁmc = _;MC = lPMI cos ch cos AM 8"12
Pyl sin &y
‘thl cos aZoLl sin AL'
P 1€ = |f,| cos &pr cos Agpr . | 8-13
I&II sin chLl
Using the notation defined in Section 9, the vector 'ﬁm‘e in the cy system is
- : . ey
(Rm’e )¢ = [R3 (7 + AL):] (:Rl (Lg, - v/e):l Rp+ 8-14

In verbal terms, the transformation from the .¢; system to the cj system is
obtained by
(1) rotating about the 4 axis through an angle -( 7/2 - L), so
that the rotated "3" axis is parallel to the c3 axis. |
(2) rotating about the rotated "3" axis through an angle (7 + Ay).

Similarly, since Hy, is in the direction of the 3 axis:

HC = [33 ( 7+ AL):I [Rl (1, - n/z)} ?II:[ 8-15
where
0
5 - o
Hy,
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Combining equations (8-10) through (8-16) yields the scalar equations

cos"‘fL. sinAL: - xmfe cosALx

% = lPMl cos & y sin Ay = IPL‘

- yp% sin Ly sin A v + (zm'? + Hp) cos Ly sin A 1. 8-17

N !PM‘cosfM cosh y = !PL|,COS°(,L: cos A 11 "‘me sin A ;.

-yp€ sin Lpr cos A L+ (2, % + Hy) cos Ly, cos A 8-18

N
]

- }PM sin aZ’L' + ymf cos Lyt + (zm‘p + HL) sin Lyt

Sinosz= lPLI

8-19

Then by taking the sum of the squares of equations (8-17), (8-18) and (8-19)
PM =EPL'2)+ (xm/)e + (ymf)z + (ij + HL)2

1/2
—2PL1 {ym—p sin (LLt - le) - (Zm’p +HL) cos (LLI —"ZOL')]

8-20
solving equation (8-19) for sin oy
c
sin IM = ...Zm_.
Py
P £ # 4+ H
sin "fM = L sin fo + n cos Lyt + £f_n;___L_)_ sin Iy 8-21
M Pu
and since (-90° <= y=<90°)
cos &y = V1 - sin? & . - 8-22

Multiplying (8-17) by cos A ' and (8-18) by si1A [+ and subtracting yields:

c c s
Sin(AM—AL)=xm cosA 1, - yp© sinA 1

Py cos al"M
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| sin (Ay - A7) = 8-2
‘ M L pM cos fM 3
Multiplying (8-17) by sin A1+ and (8-18) by cos A1 and edding ylelds:
. € sinA ; + y.© cosA
i o (hy = Ag) = St
’ M M
1 ¥ V.
cos (Ay - Ap) = —=— M eogf 4 - 2B gin L.,
(A L7 7 cosot M Ru L Ry L
£ .
NG W 2 B -2l
Ry

Equations (8-20) through (8-24) give the geocentric coordinates of the point,
M Py, &y, Ay. To find the geodetic coordinates Hy, Iys Ay the best approach
is an approximation, since exact solution requires solving a cubic equation.
Compute a first approximation to PM,, by using "fM in equation (8-1). This

yields the radius to the surface at ae"M

(Pyr)1 = 2 . 8-25
14k sin® an

Then since &’y is very small

(By)y = Py - ( Pyr)1- 8-26

This value of (Hy) is accurate to 1:10°.

S Lo+ = tan-l k SlnofM cos oZoM 8-27
Iyr/y
1+k sin® Ly
Using the law of sines in the triangle MCM' in "igure 8-3 yields
in
( 8&y); = sin™t (Fy)y sin (8 Ly )y 8-28

Rm
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(Lyrdy = Ly - (831 8-29

k sin (1)1 cos (Lyr )1

(8 :) = 8_30
LM 2 1+k sin2 ( ofMl )l
(Scfm)g = sin-1 (HM)l sin (8 LM')2 8-31
Ry
I"M‘OfM"‘(SLM')2+ ( 3o - 8-32

8.7 The problem of transformation stated in 8.1.2 above is restated here:

Given a Cartesian coordinate system 13 defined as 8.6 and a system

m; with
Origin at the point, M, as defined in 8.6
- =2
ms3 in the direction of the vector, Py from the center of the
earth to M
52 normal to 1—53, in the plane of the meridian of M
- - -
my normal to m, and n35 positive east.

Find the transformation between '?i and. my .
Figure 8-6 illustrates the relationships. The equation of transfor-

mation of any vector ? from my to £ i system is

74 - l:(Rl( T/2 - LL)] [33(AM - AL):] [Rl(an - W/QZI vo, 8-33

In verbal terms, the transformation is obtained by
(1) rotating about the my axis through an angle -( 7/2 - &)
(2) rotating about the rotated "3" axis through an angle (A y - A1),

so that the rotated "2" axis and "3" axis are in the meridian

plane of L
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FIGURE 8-6
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: (3) rotating about the "1" axis through an angle ( 7/2 - L).

Equation 8-33 is written
\_;j = [aij] V-\m 8-314

and the terms of [aiil can be obtained by substituting into (8-33) the forms

of the elementary rotations defined in (9-8), (9-9) and (9-10), with

a11 = cos AA

a1p = sin AA sin £y

a3 = -sin AA cos oy

as) = -sin Ly sin AA

8on = €O0s Ly cos &y + sin I; cos AA sin ‘fM

ap3 = cos Ly sin Ly - sin Ly cos AA cos Ly

a3 = cos L sin AA

a3p = sin Ly cos oy - cos Ly cos AA sin &y

a33 = sin Ly sin &y + cos Ly cos AA cos Ly - 8-35
The matrix l:ai J] defined by the nine equations (8-35) is the matrix such that

8.8 The problem of transformation stated in 8.1.3 is restated here:
Given a Cartesian coordinate system —?i defined as in 8.6 and a Car-

tesian system ti defined as follows:
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Origin

.tl to-
plane

1

t3

at T with geodetic coordinates (Hp, Lp, Aq)

normal to the

axis positive

axls positive

axls positive

plumb line direction at T

east

north

up, along the geodetic vertical through T.

Given xmd?, Yn% s zy4, the coordinates of a point, M, with respect

to L. Find xmt, ymt, zmt the coordinates of M with respect to T.

66

Figure 8-7 shows the relationships.

Ryl = By - Ppoo+ Pro o+ Hy + R 8-35
-H*Tt _ 8-36
L
- -
Pt = I:Rl (-SLI.):] 0 8-37
Pt
- = —
0
P11t
L
8-38
o

H - [Rl (/2 - IT):][R3 (-Ap + AL)][Rl (L, - "/2)] 0 | 8-39




FIGURE 8-7
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Fa®)® =[R2 - 1) [ Ry (g v A [y (g - 72)] | ®

Using equations (8-36) through (8-L0) in (8-35), and using the definitions

of Section § results in:

In (8-41), the

68

by

12

'bl3

ky rbll b2 DPys X
= k2 + b2l b22 b23 ymf . 8-— l}l
kg by b3 Dbgg zm«?
L |

elements are:

=cos (Ap - Ap)

-sin (AT - AL) sin Ly
sin (AT - AL) cos Ly,
sin Lp sin (AT - Ap)

cos Lq cos Ly, + sin Ly cos (A - Ap) sin Ly

cos Lp sin Ly - sin Lp cos (Ag

]

A1) cos L

-cos Ly sin (ArIl - Ap)

sin Ly cos L, - cos Ly cos (A A) cos Ly,

sin Ly sin Ly + cos Lp cos (AT

AL) cos Ly. 8-42



ky = -bjp Py sin 8Ly + by3 (A + Pp cos S1p)

>
n
i

- PT sin SIT - bpo P1, sin 8L1'_.+b23 (HL+ P1, cos 8LL)

o
w
1l

~Hp - Ppcos 8Ly - b3y pposin S1Lp + b33 (H, + pp, cos S1p).
8-43

The nine elements of {8-42) give the rotation, and the three elements of

(8-43) give the translation for transforming from the £, system to the tj

system.

8.9 The differential equations of Program 5 are computed in a system 4,

with
Origin at launcher
f; fo-
plane coincident with £ 1 £ o-plane
1 along firing azimuth
f3 along —?3 axls.

The transformation from fi to fy is
= =28
Vf=E%(af-9wﬂ\r

af azimuth of firing, clockwise from north.
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9. Vector and Matrix Notation and Definitions

5.1 The notation defined in this section is intended to provide a systema-
tic and relatively compact means of writing vector equations which involve
coordinate transformations. The key to the notation is the use of subscripts
and superscripts to define the coordinate system used. Thus, the basic symbol
assigned to a vector remains the same, even though the coordinates are trans-
formed to a different system.*

With one exception, the definitions given below are repetitions of
standard definitions in elementary vector and natrix theory. They are re-
peated here to illustrate the notation. The exception is the definition of
the derivative of a vector, and the resulting cerivation of the equation for

the derivative of a vector in a rotating coordinate system.

9.1.1 In discussion of Cartesian coordinate systéms each of the
three axes will be referred to by an identifying letter, characterizing the
coordinate system, with a subscript number, 1, 2 or 3, identifying the axis.
For example, the axes of a body based system will be called by, bo, b3; the
axes of a ground baseg system, g3, &, g3- The systems will be referred to
as the by or the g; s;stem. The unit vectors directed along the three axes

of a system will be designated by the axis identifiers with a vector symbol.

D - N - P -
For example, by, be, b3; 81, 82, 83- The three axes of a system are so defined

*The notation is adopted from that used in Reference 5.
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that they constitute a right handed system. The conditions for a right handed

system are:

[N - - - - -

8] x 82 = 835 8p x &1 = -83

]
[

-

- - S o -
€> x 83 = 81 83 x 82 = -&7

= s N .

o - Y =3 S
g3 x 8 825 81 x 83 -go.

2;5;2. A vector which is expressed in terms of components in a given
system is identified by using the identifying letter of that system as a super-
script. For example, the vector v'expressed in the body coordinatg systen is
?b. The scalar components of the vector in the gystem referred to are identi-

fied by the vector identifier, with the coordinate system identifier as a

superscript and the axis identifier as a subscript. For example:
- - - -
VP = V1P By + Vpb By + V3P Dy- 9-2

In the special case of a radius vectof from the origin of a
system to a point the symbol used will be ﬁ with a superscript identifying the
coordinate system, and a subscript identifying the point. The components of
such a radius vector will be written x, y, z, with the same subscript and
superscript.

For example ﬁ}ﬁgwill designate the radius vector from the ori-

gin of the g4 system.to the point M, and is written in component form:

-

N N N
Rp® = x5 &1 + y® &2 + 7% g3.

Vectors will also be written as column matrices, i.e.

T2




1
Y
VS = '
V3®
xmgW
-
ng = ymg .
7z 8
m
L i

9.1.3 The vector identifiers are upper case, and the corresponding
- Y
unit vectors lower case. The unit vector in the direction of a vector V is

3, and the magnitude is IVI, so that:

V=lv|¥ 9-3
and

VP - |v| ¥P

7P = [v] (v, ﬁi + VP ﬁé + v3b ﬁé} 9-4

. Y
The components Vis Vo, v3, of the unit vector v in a given

-
system are the direction cosines of V in that system.

9.2 Coordinate Transformation Notation and Conventions

9.2.1 If r; and sy are any two Cartesian coordinate systems, and if
i Y -
V is any vector, the relation between the components of V in the ry system

e~
and the components of V in the s,

i System is written:¥

*Reference 6, Chapter L.

4
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- - T

| v1® a11  a1p a3l Vi
s _ r
| V2 = a21 a22 a23 V2 ‘
s
I V3 &31 a32 8.33 V3I‘ 9"5
L . L 4 L i

- -
In this equation, a;. is the cosine of the angle between s; and r

J.

ments, ajy, aip, 2535 of the i*R row of the matrix are the direction cosines

of the sy axis in the ry, Tp, T3 system. The elements, a1js 83, 233 of the
jth column of the matrix are the direction cosines of the rJ axis in the $1»
Sp, s3 system.

The inverse relationship to (9-5) is:

[~ ] B 1T T
VT ajl1 ap1 a3l Vls
Ir
Vo = P2 8 2y VoS
v3* F13 %23 °33) |V 9-6

The matrix of the inverse transformation is the transpose of the original

matrix.

The relationship (9-5) also holds for the unit vectors of the

two systems:

-_; = ~ - "'A =
51 411 %12 &3] |71
- -
S21 = |%21  Bpp  8p3] (Yo
-— -
°3 %31 %32 ®33) |73 -1
L L - L .

. 3
The matrix of equations (9-5) and (9-T) is called a "direction cosine matrix",
an "orthogonal transformation matrix" or simply a "rotation matrix". For ease

of writing, equation (9-5) is written

7o oy

Th



and in general, a matrix

is written a,,].
L *d]

a

a

a

1
i 3

11 %12 213
21 %22 823

32 33

The element in the itB row and jth column is written ajj.

The inverse matrix

is written [aji]'

a

812 8p a3

813 823 833

11 821 ‘5‘31—1

9.2.2 Several facts about matrices such as [aij] are important:

(a) The "orthogonality conditions" are

(c)

3 5 3 5
2. a4yf =2 eyt =1

=1 J=1

3 3
.Zl aij aik =‘ZJ|: aij akj =0,

1= J:
BEAS L 1k

3

The determinant of the matrix [aij] equals 1, if Faij]
is a transformation between two right handed systems.

The co-factor of any element 84 in the determinant of

J?
the matrix [aiﬂ , is equal to aj 4.
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(d) The identity transformation matrix is designated by [l];

1 0 ©
[l] =0 1 O
0 0 1
A J

and

[ [eae] - [2]

(e) If [éij} and [%ii} are orthogonal transformation matrices,
there exists an orthogonal transformation matrix [?ié]

such that

22 - e [] -
9.2.3 If Ty, 54 and t; are any three distinct Cartesian systems and

-
V 1s any vector, the relationships can be written:

-

A, = Y
r
VE = a5 V
S ro = a
V"= eij Vs
.At » 85 A
V" '= fij vT

then

[ < ol Bl -

That is: the matrix defining the result of two successive rotations is ob-
tained by taking the product of the matrices defining the individual rotations,
with the matrix of the last rotation on the left. Since matrix multiplication
is not commutative, the matrices must be multiplied in the same order as the
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rotations are considered.

9.2.4 The transformation of the cooriinates of a point M from one

system to another involves a translation and a rotation

- S S
Rms = [ai] Rmr + Rrs

|
[
e
L=
~~
=] 2
E"i
I
oo
)
(o]
p g

n the vector from S to M expressed in the 54 system
>
Ry the vector from R to M expressed in the r; system
=5
Rr the vector from § to R in the s; system
>
Rg the vector from R to S in the r; system.

9.3 Elementary Rotations

In many applications, the 3 x 3 matrix [%ié] is difficult to obtain
directly. TFor this reason, we consider elementary rotation matrices. An
elementary rotation is here defined as one in which one of the axes remains
fixed, and the other two axes rotate about the fixed axis. Any possible ele-
mentary rotation can be expressed in terms of one of the three matrix operators

defined below.

9.3.1 A positive rotative rotation about the "1" axis is defined as
]
one by which the "2" axis rotates toward the "3" axis. If the axes sy are
defined as the axes obtained by rotating the axes Tp, T3 about r;, through an

angle © as in Figure (9-la) then:
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- = — a9
Vls 1 0 0 Vlr
VoS 0 cos 6 sin @ | VoT
V3s O -sin 6 cos © V3r
L - L [ pe
3
\
\
\
\
\
\ ”s
\ /,»’
\ -
\ ’,-’ e
r|,s|
[R,(8)]

FIGURE 9-la. Elementary Rotation about fl Axis

All positive rotations about the "1" axis yield matrices of the form

1 0
0 cos
0 -sin

—
0

sin

cos .

This form will be abbreviated to l:Rl] and equation (9-8) written

s - Ezl (QZ] 7T,
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9.3.2 A positive rotation about the "2" axis is defined as one by
which the "3" axis rotates toward the "1" axis. If axes t; are defined as

those obtained by rotating 835 81 about sp, through an angle ¢ as in Figure

9-1b then
Vlt cos ¢ 0 -gin ¢ Vls
V2T' = O l O "25 .
& V3t sin § O cos @ V3S 9-9
L . L g U .
S3
t
3\
\
\
\
\
\
N9
\
Ve
\
AN
Sty
7
/
/
/
D
/
/
/
/
/
/
S
/
f [R.($)]

FIGURE'9-lb. Elementary Rotation about sp Axis

All positive rotations about the "2" axis yield matrices of the form

cos 0 -sin
Eﬁﬂ = 0] 1 0
Uiin 0 cos
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and equation (9-9) is written

v - [Rg <¢ﬂ Vs,

9.3.3 A positive rotation about
which the "1" axis rotates toward the "2" axis.

those obtained by roteting +1, to about t3, through an angle Yy as in Figure

If axes uy are defined as

the "3" axis is defined as one by

9-1lc then
- A ~ _
V{4 cos ¥ sin V¥ C] VltT
Vol = |-sin ¥ cos Y ol jvot |.
VU 0 0 1 Lv3t 9-10
ts3, U5
-— - -
—
/
14
/
/
/
/
/
/
t '/
/
| ! [Ry (v))]

FIGURE 9-lc. Elementary Rotation about t3 about Axis
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All positive rotations about the "3" axis yield matrices of the form

cos sin 0

[}23] = | -sin cos 0

0 0 1

end equation (4-8) 1s written
Tu - Eqa (q/)] vt.

9.3.4 The form of the elementary rotation matrix is, of course,
independent of the symbol used to designate the angle. TFor example, a rotation
about the "1" axis through an angle a, as shown in Figure 9-2a would be re-

presented by the matrix:

1 0 0
|:Rl(a)]= 0 cos q sin q
0 -sin a cos af .

If the angle used in the rotation is not positive in the sense defined in
9.3.1; for example if the rotation is through an angle 3 about r, from r3

toward rp, as shown in Figure 9-2b, then the rotation matrix is:

1 0 0
cos (-B) sin (-B)
0 =-sin (-8) cos (-B)
PR o |

= |0 cos 3 -sin B

]
O

Ry (-8)

0 sinpB cos B1.
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If the angle used is not defined as the angle between the rp axis and the 5o
axis, the rotation can still be expressed as such an angle. For example, in
Figure 9-2c, the angle A is the angle between the sp axis and the r3 axis,

positive from r3 toward Soe This rotation is written:

rl 0 0
qu O - n/e]= 0 cos (n - [I/2) sin (N - T/2)
O =-sin (A - II/2) cos (XA - TI/2)
‘ B
=0 sin )\ -COS \
_o cos )\ sin )‘_j .

\ 9.3.5 By using the convention that all elementary rotations will

be written using the operators [Rl ( )], [Rg ( _SJ, [R3 ( )] much confusion
can be avoided. All rotaticn angles can be expressed in terms of positive

rotations about one of the three axes, as defined above.

9.4 The result of the three rotations described by equations (9-8), (9-9)

and (9-10) is written

|
|
|
|
|
—
0 0

N
\7\1 = [33 (4/):1 [Rg (¢):l [Rl (9)] vt 9-11
and by multiplying the three matrices
\—;u=' l:aij:l {/ér

where

[aij] = [r3 (¥]) (72 (9] [ ©)]. 9-12
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3
S3
a
R(a)
"1y, [' ]
S3
r,s

3
S3
Sz
B S2
B
f> !2
M8 [R' (-B)]
1
Sz
A
fa

R, [x——}]

FIGURE 9-2
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Any matrix [ai,]] defines a unique relationship between two coordinate systems,
and depends only on the relative orientation of the systems. The series of
rotations as defined in (9-8), (9-9), (9-10) may be defined in the conditions
of the problem, or may be a mathematical artifice to enable us to sece the
transformation one step at a time, in two dimensional representation. These
elementary rotaticns define the transformation in terms of angles, which are
sometimes easier to work with than direction cosines.

The matrix [aiﬂ was defined in terms of three elementary rotations,
as shown by (9-11). The rotation at the right was taken first, so that this
was a sequence Ry, Ro, R3. If the sequence had been different, for example
R1, R3, Rp then the resulting matrix product [R2 (¢ﬂ [:R3 (’J»’i] [Rl (Gﬂ would
not equal the l:ai'j] obtained before. However, it would be possible to find

three angles, which we can call ¥', §', ' such that

e - B 0] o (9] ]

In fact for any given direction cosine matrix [aij and for any of the sequences
of rotation listed below it is possible to find a set of three angles such that

the resulting matrix product is equal to l:ai j] .

Ry, Rp, R3
Ry, B3, Rp

Ro, R3, R3

R3, Rp, Ry | 9-13
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Ry, Ro, Ry
Ry, R3, Rp
Rp, Ry, Rp
Ro, R3, Rp
R3, Ry, Ry

R3) Ro, R3 9-14

will be equal to the given |a..|. The rotations (9-13) are called nonrepeti-
1J

tive sequences; the sequences (9—1h) are repetitive. It is possible to express

any problem involving coordinate transformations in terms of elementary rota-

tions in any one of the twelve ways.

The choice of sequence may depend on one or several of the factors

listed below:

(2)

(v)

(c)

For example:

(2)

Actual knowledge of rotations involved, as implied by the geometry
or by mechanical systems involved

The physical laws involved, which make the computations much
simpler and the output much more meaningful in one system of
angles than in any other

The output data from the problem which may be required to be in

a given set of angles.
1

In reduction of ballistic camera data, it is convenient to trans-
form data from an "object space" to an "image space". If the

camera is mounted on a precision three-axis mount which rotates
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first in azimuth, then in elevation, then in tilt, the angles
used would be those measured by the scales on the mount and
the angle sequence used to describe the transformation would
use the same order of rotation as do the three axes of the
camera.

(b) In the classical solution* of the dynamics of a force free rigid

body a transformation between inertial axes i

; and body fixed

axes bi is made. The sequence chosen is R3, R1, R3 resulting

in a transformation matrix

R3 (V) Ry (6) B3 (@).

The inertial coordinate system is chosen with ié directed along
the angular momentum vector of the body. With this choice of
coordinates, ¥ is the spin angle, 6 the nutation angle and ¢
the precession angle. The physical laws have a relatively
simple form in terms of these angles, and the angles themselves
have definite meanings. This sequence yields the so-called

"Euler Angles”.

9.5 Differentiation of Vectors and Matrices

The derivative of a scalar quantity with respect to time is indicated
by a dot over the quantity. The derivative of a vector quantity, as used here,
is the vector made up df the derivatives of the scalar components of the original
vector. In this sense, differentiation is meaningful only as defined in a

specified coordinate system.

*Reference 6, Chapter UL,
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In the notation defined in 9.1.2

<ipe

. N . N . -
T = Vlr ry + Vol 1o+ V3r T 9-15

. . oS
The derivative of V® is:

\_;S = Vls -é‘l + ‘}25 ?2 + ‘}38 .;’.‘. 9'—16
Now if
N _
Vo= [aiﬂ ' 9-17

the derivative of (9-17) 1is

VS = lia.i'ﬂ %[\I'_'_ [a-.ij} \_;I" 9—18

[éié] is thé matrix whose elements are the derivatives of the corresponding
elements in E;Lij} - By writing (9-17) as three scalar equations and taking
the derivative of both sides of each equation s then rewriting as a matrix
equation, we obtain (9-18).

Equation (9-18) is equivalent to the ‘equations

: : S -
K—[As = [aiil \—I\r - wSx VS 9-19
78 = Ea.ij] (VT - &T < TT) 9-20

where & is the angular velocity vector of the s4i system with respect to the

r; system.* '

Equations (9-19) and (9-20) are derived on the following page.

*Reference 6, p. 133.
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9.5.1 1In order to simplify the matrix [éi‘i) , in equation (9-18) let

[aij (tﬂ = ]:bij (tﬂ l:aij (tl)] 9-21

where E.ij (t}] is the matrix l:aij] as a function of time, Eiij (tlﬂ is the
matrix Eii‘il at arbltrary constant time, t;, and [bij (t}l 1s the matrix which
makes (9-21) true. E)ij (t}l is the matrix defining the rotation of the sy
system from the time t; to the time t.

Now consider the derivative of a general matrix product. ITf

i - b
- Bl B - )

Taking the derivative of both sides of (9-21) yields

g ] = g 0] s ] + s € oy ).

Since Eij (tlﬂ is the value of [aij] at a constant time,

[éij (tlE] =0

and

By ] - s €] oy ]

Now E)ij (ti] can be written as the product of three elementary matrices:

P )] = [m @) [r2 0] [r5 ()] » 9-22

where Ekl (@)] , E}Q (¢):l, @3 (\Pﬂ are functions of time.

*Any non-repetitive sequence can be used in the derivation. Use of a repetitive
sequence invalidates equation (9-28).
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- T T

Y, ©, § are the three angles which describe the rotation of

the 84 system with respect to its position at time ti. The angles are zero at

t1. Then
l:le (t)] = [RJJ [R;_J [R3J + [RJ] [é% %3] + [RJ] [Rg} ER;J 9-23
in which the arguments of the rotations are omitted for convenience. The
derivatives [1;(1}, 1:?2 s ['3 are obtained from (9-8), (9-9), (9-10)
0 0] 0 T
[ﬁl:l -l0 -6sine & coso
K -6 cos © -0 sin 9] 9-24
P-gz sin @ 0 -§ cos ¢—
[ﬁ% - 0 0 0
;3 cos § O -g3 sin @ 9-25
- . . -
- \‘/ sinw \‘/COS\P 0
[R:l = |- V/ cos ¥ - \i’sinw 0
0 0 0 9-26
B N
Now if we let t approach t1
lim . 1lim . .
Bus ] = 2 s o] g 0]
= D | BB )« ) ] o] + ] B [
b t = ' R R R R R Ryl + [R R R
t—atl [ij ( )] t—tq [ ] [2 307 1 3 L 2
9-27
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Since

lim ) lim
t) =
¢ ( t—t

t—)tl

6 (t) =

1

then using (9-28) in (9-8), (9-9) and (9-10)

lim

t-—atl

and using (9-28) in (9-24), (9-25) and (9-26)

[0
1im .
t—atl[%l(tﬂ = °
0
-
0
lim .
t—ty [Rz (t)] B ?
g
[0
lim [ )
bty [33 (t)] = |
0

lim ﬁij(tﬁ )

t-—etl

90

lim lim
[Ry (] = bty [’y (£)] = — [R3 (£)] =

t =3ty vit) =0

1 0
0 1
0 O

9-28

9-29

9-30

9-31

9-32

9-33



and

o
lim , .
t—)tl [aij (t)} = |-V 0 o [aij (tl):]. 9-3h
g -6 o0
t] 1s an arbitrarily chosen time and (9-34) is true for any choice of t1, so
(9-34) is true in general.
0 LA
[éi] ==Y o {ai;ﬂ : 9-35
6 -6 o
L -

From the definitions of Y , @ and §; & is the rate of rotation
of the sy system about the s1 axis; ;25 » the rate about the sp axis; \l/ , the rate
about the 83 axis. In other words, at the instant t = t1, é, ;5, V¥ are equal to

the components of the angular velocity vector u—; resolved in the 81, Sp, 83

system:

N - -
w?® = w 1S -ST_*L + wo® so + w3s 3 9-36
as '— é - o - -

=05y + P+ ¥ s3. 9-37

(9-35) cen be rewritten:

[é’ré} - [“;is} {am} - 9-38

where the symbol [w S] means

i
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O u)3s —was
w23 - wls 0

Using (9-18) and (9-17) the last term in equation (9-18) can be written
Gl ere [osl [a, ] or
[14] Uil L)
- [wiﬂ s, 9-L0
Then finally, expansion of (9-40) will show:
[wﬁ] 75 = -9Sx 7S
i
80 that
Vs - [a} VT . @S« TS, 9-19
1d
Another expression for VS is obtained by multiplying (9-38) on the left by
[o1d] [ood] =[]
to get
Bl - ] o] B9 B
fd - [ o] [

but, as can be verified by performing the multiplications,*

o] [o] ] - ]

*¥Reference 6, p. 105.
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T e

so that

- [ B

Using (9-41) in (9-18) yields

<
9}
it

P ] 770 ][]

VS = I:aij} [if’r - WT x ?rl. 9-20

The above derivation yields the same results as the classical
approach. The advantage of (9-19) and (9-20) over the operator definition*
is the inclusion of the rotation matrix in the equations.

9.5.2 Taking the derivative of (9-18) yields

Ve = fogy| Fr42 [éag] 7+ [d1y] 7 9-b2

and from (9-38)

[ =& [0 P

o] B+ [+ B

From (9-38), the second term of (9-43) is

o] g = o] o] B

so that (9-42) becomes

.\;;S = [aij] .;V)r + 2 [wis] ljaij} .v\r
+ [wis:l [wis] [a'ij} {/}r+ [&)18] [aij] {/'}r. 9—1\\)4
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From (9-18)
N !;Jis] 7s.
L
Substituting (9-45) into (9-L44) yields

v foaf P2 [ oo [or] [ord]

- _\s

-

oL

[ai‘j:l VT -2a5x V5 - oF « wSx VS -

9-15
7S 4 [&Jf’] Vs
(js X \_I'ss 9-46



10. Equations

10.1 'lower Phase Equations

Tower phase equations are used in Programs 1 through h, if the

initial zm*e is less than zrp.

10.1.1

Variables of the Differential Equations

10.1.2

xy = 5y f
Xp = xg
X3 = im!
S

Initial Conditions

10.1.3

=0
o]

X3

Differential Equations

% = (lTl ~ IDl - M IE cos Q,) sin 6y/M
%p =1
X3 = (lT - ‘DI- M |E | cos 8,) cos 6,/M
X), = X3
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10.1.4 Exit Conditions

Exit tower phase when

Zm‘? = ZT

by an altitude discontinuity check. Exit to the atmospheric equations.

10.1.5 Functional Equations

]
>
|

%

from 5-1

from 6-5

from mass table {Section 5)

from 4-9

trajectory parameter

10.2 Two Dimensional Particle Atmospheric Equations

Two Dimensional Particle Atmospheric equations are used:

(a) in Program 1 starting from tower exit,

b) in Programs 2, 3, and 4 after angle of attack oscillations
)

damp out,

(¢) 1in Programs 1 through 4, from re-entry to impact.

10.2.1 Varilables of the Differential Equations

Xl=

X2



- - -

xu:zm'e
10.2.2 TInitial Conditions

(a) TFor Program 1, starting in tower, initial conditions
are tower exit conditions.

(b) For Program 1, starting above tower, initial condi-
tions are read in on cards.

(¢) For Programs 2, 3 and L, starting at the switch from
rigid body equations, initial conditions are obtained
from the rigid body equations.

(d) For Programs 1 through 4, on re-entry, initial condi-
tions are obtained from the vacuum equations.

10.2.3 Differential Equations
>'<3 = (ITI - lDl) cos 6/M - \El
}'{M=X3

10.2.4 Exit Conditions

(a)

During ascending flight, exit when sz? + Hp = 300,000 ft.
by a discontinuity check and after burnout of last
stage. Exit to vacuum differential equations or to

closed form equations controlled by program switch.
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(b) During descending flight, exit when sz? =0 by a
discontinuity check. Exit to next trajectory, with
Oy + A O replacing 9,5, or to program halt if 6, is

Opax-

10.2.5 Functional Equations

iT i from 5-1

lD l from 6-5

M from mass table
E from 4-9

sin 6 = %€ /v

cos 0 = 28NV

V =A/(5r€ )2 + (3% )°

10.3 Vacuum Equations

Vacuun equations are used in Progrems 1 through 4, when £ 4z )
Zn H

300,000 feet, and after thrust terminates.

10.3.1 Variables of the Differential Equations

X1 = %%
xp = xp %
x3 = &%
ay = m®

10.3.2 Initial Conditions

Initial conditions are obtained from last point of atmos-

Pheric equations.
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10.3.3

Differential Equations

10.3.4

x] =0

Xp = X
X3 =-’El
x), = X3

Exit Conditions

Exit when (znﬂ?

discontinuity check.

10.3.5 PFunctional Equations

lEI from 4-9

10.4 Closed Form Vacuum Equations

+ Hp) = 300,000 feet on the descent by a

Closed form vacuum equations are a program option to be used instead

of vacuum differential equations.

10.4.1 TInitial Conditions

10.4.2

Xy _ xmfe
Zy B ém“?
ZV Z m"e

Apogee Equations

Xp X
ip | = | g%
z, 2y
Ty t

Zp =z, + ivg (Ry + Zv)ﬂ/ [280 R02 - ivz (Ro + ZVH
e

entry to vacuum

peak
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Zp

ty +4/ (2 - 2y) (Ro + 24) (Bo + zy)
+</\/(RO + zp)3/2 8c ROQ) Q:an"l‘\/(zp - zy)/(Rg + zv)>

Xy + Xy (tp = ty)

Xy

10.4.3 Re-entry Equations

Xy, X
*p x
ér = sz
2y 25
tr t re-entry
Ry = %,
X, = Xy + 2;(\, (tp - ty)
Z.r = iv
ZI‘ = ZV
10.5 Rigid Body Equations

Rigid Body

at tower exit.

100
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10.5.1 Variables of the Differential Equations

10.5.2

X1

X2

*3

Xk

X7

@ (Program 5 only)

Initial Conditions

x] =|§m’€ cos B

xp = | Byl | sin B
-6,

xy =B

x5 = x;%

*g = 2y X

x7 = @, (Program 5 only)
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10.5.3

Bo . ‘trajectory parameters from input data

2% 8 from tower exit conditions

Differential Equations

10.5.4

1 b b b .

X2 =£(T3b+A3b) +E3b+X3 Xl
M

. _l _\.b _\b - b = D b .
X3 = E.( MpP|* 4+ IMgO o+ M|+ My | ¥+ Mgl - 1 x3)
Xy = X3
x5 = X1 sinB - X5 cosB
}E6=xl COS.B+X2 sin.B

or . program option in Program L

X7 = $ (t) from table

-’

Exit Conditions

*Program 4 only.
102

(a) Exit to particle when angle of attack has been less
than a pre-set € for ten successive iterations.
(b) Exit to particle when a pre-set altitude is reached.

(¢) Exit to program halt at impact z £ = 0.




10.5.5

Functional Equations

TP 5-2 or 5-3

AP 6-9 or 6-13

EP 4-9 and h-16

ﬁfb 5-6 (Program 4 only)
ﬁjb 5-T

ﬁL’Pb 6-14

T 6-15

ﬁB L 6-17

10.6 Three Dimensional Particle Equations

Three Dimensional Particle equations are used throughout Program 5.

10.6.1

Variables of the Differential Equations

Xy = Xpf
Xp = me
xs = Sat
Xy = ymf
Xg = 2.f
Xg = z, f
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10.6.2 Initial Conditions

(a) For tower phase

=0
o

(b) For atmosphere phase

i .
o tower exit

(¢) For vacuum phase

HM = HV

Hy = 300,000 feet or Hy = Hy at thrust termination

whichever is greater

10.6.3 Differential Equations

(&) Tower phase

5= [ - |+ [g] cos 6] stm 0 cos ¥]
ko =

i3 = [l - o] + [g] cos 6] stn o stn y]
%), = x3

is <[ [[F] - P o ] o8 6] cos o]

%6 = %

10k



()

(c)

Atmosphere phase

D

X1 :]sin 6 cos V| /M + Ef

il
~—
+3
I

Xp

1
b
ol

%3 = HTI - lDl:l sin 6 sin W‘/M + BT
X}y
X5 = UTI - IDI] cos 6|/M + E3¥

X5 = Xs

]
o]
w

Vacuum phase

Xy = Ef
i =%
x3 = E,T
%, = xq
X5 = Eg'
o=

10.6.4 Exit Conditions

Exit Conditions are identical to those of Program 1.

10.6.5 Functional Equations

|

from 5-1
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from 6-5. Note:

table lookups

Tower setting

Hy is used for atmosphere

tan~t ,\/()me)z

tan™t (x/y,T)

T-1k

+ (yg D)2 v
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GLOSSARY

The section listing below gives sections in which the symbols are defined
in context.
For explanation of vector subscripting and superseripting conventions,

see Section 9.

Symbol Section Definition

2 4,6 Aerodynamic Force

AE 5 Rocket motor exit area

a 7,8 Semi-major axis of the earth

8 j 9 Element in i*B row and jth column of [aij]
[?iﬂ L Direction cosine matrix transforming from

launcher system to body system

[?ij] 9 General direction cosine matrix

by L7 Body coordinate system axes
b-superscript Indicates vector resolved in body system
b-subscript 5 Rocket motor burnout o

Ebij] 8 Matrix of transformation from £ system

to t; systemw

Ebij] 9 General direction cosine matrix
T 47 Centrifugal force vector
Z; 8 Coriolis force vector
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Symbol

C

Cy

c-superscript

[ei5]

g-superscript

Section

O O O Oy

b7

W O O O O

L,T

4,8
4,8
k7

4,8

Definition
Center of the earth
Axes of earth fixed coordinate system with
origin at the earth's center
Indicates vector resolved in cj system
General direction cosine matrix
Drag coefficient
Lift coefficient
Slope of C; vs. @ ,at a=0
Slope of Cy for fins alone vs. @, at @ =0
Center of gravity of rocket
Center of pressure of rocket
Center of pressure of fins
Drag force vector
Reference area for aerodynamic coefficients
General direction cosine matrix
Net acceleration vector caused by gravita-
tion and rotation of the earth
Force vector
Function of variables in parentheses
Axes of system aligned with firing azimuth
Vector resolved in fy system
Gravitational acceleration vector
Magnitude of E at a reference point
Ground fixed coordinate axes

Indicates vector resolved in g; system
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h

I,Io
I-subscript
I-superscript

J

X .
iJd

Ll

Section

8
8

(8]

\

Definition
Geodetic height of launcher
Vector from surface of reference ellipsoid
to I, in pluab line direction
Geodetic height of rocket
Vector from surface of reference ellipsoid
to rocket, in plumb line direction
Geodetic height of target
Height of rocket
Transverse moment of inertia of rocket
Rocket motor impulse
Vector resolved in inertial system
Total impulss of rocket motor
Increments of variable in Runge-Kutta
integration
Constant of proportionality between thrust
and mass flow rate
i=1, ..., 6 constants of gravitational
potential
i=1, 2, 3 translation constants for
transforming from ‘éi to t; system
As a point: Launcher location
As a subscript: Pertaining to the launcher
Foot of perpendicular from L to reference
ellipsoid
Geodetic latitude
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Symbol Section

Lsubseript 8
L 6
o 6
Ip 6
L 8
df—subscript 8
£ 4,8
£ _superscript 8
£-subscript 8
M 8
M L
W N
Mo 5
ﬁj 5
¥, D 6
T 6
¥ 6
m 6
n 2
o-subscript
P 8.4

Geodetic latitude of point indicated by
subscript

Lift force vector

Lift force caused by fin malalignment
Lift force cansed by tail surface alone
Geocentric latitude

Geocentric latitude of point indicated by
subscript

Axes of launcher based system

Vector resolved in #; system

Vector directed to launcher

As a point: Location of rocket

As a subscript: Pertaining to rocket location

Mass of rocket

' Moment vector

Moment caused by thrust malalignment

Moment caused by Jjet damping

Moment caused by 1lift and drag

Moment caused by fin malalignment

Moment caused by aerodynamic damping

Mach number

Number of first order differential equations
in set

Initial condition

A point on the surface of the reference
ellipsoid
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Symbol
P-subscript

P

Pa

+g

S

P-subscript

WE W W

S auperscript
subscript

[R1]
[r,]
[R5]

Ty

r-subscript

53

t

=12

Section

5,6

5,6

10

A1l
All
All

All

10

All

4,5

Definition
Pertsining to P, above
Atmospheric pressure
Ambient atmospheric pressure: pressure
at specified location
Sea level atmospheric pressure
Condition at peak of trajectory
Dynamic pressure
Position vector
First derivative of ﬁ
Second derivative of §
Vector from origin of system indicated
by superscript to point indicated by subscript
Distance from center of earth to point chosen
for reference gravitational magnitude go
Vector from c.g. to c.p.
Vector from c.g. to c.p.f.

Vector from c.g. to center motor exit plane

Elementary rotations about the "1", "2" and

11311 axes

Axes of a general coordinate system
Re-entry condition

Axes of a general coordinate system
Time

Thrust vector
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Symbol

TI

v-subscript

e )
xSuperseript

subscript

superscript
subscript

zsuperscript
subscript

X

Xy

ay

am

Section

8

(0¢]

10

All

O O O O

Definition
As a point: Target location
As a subscript: Pertaining to target location
Foot of perpendicular from target location to
reference ellipsoid
Axes of target based system
General vector
Velocity of rocket as defined in 4.3
Velocity of rocket exhaust with respect to
rocket
Conditions at entry to vacuum conditions
Wind velocity

Axes of wind oriented system

General variable of differential equations

Coordinates of point designated by subscript

in system designated by superscript: com-

=:superscript
ponents of Lsubscript

Distance from c.g. to center of pressure

of tail

Distance from c.g. to center of pressure of
nose

Angle of attack

Angle of attack of fins

Angle of attack of tail section

Pitch angle
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Symbhol

At

a A

40

3F
SL

&L

©

b M ™M =

-subscript

Section

6
6

10

10

5,6

Definition
Pitch rate
Ratio of specific heats for the atmosphere
Time interval for numerical integration
Difference between longitude of launcher
end rocket
Increment in launcher setting from one
trajectory to the next
Fin malalignment angle
Difference between geodetic and geocentric
latitudes of a point on the surface of the
ellipsoid
Difference between the geocentric latitudes
of two points
Thrust malalignment angle
Angle between velocity vector and the .é%
(vertical) axis
Longitude
Sumation

Summation over the index i

Vector from center of earth to point indi-
cated by subscript

Radius of earth

Gravitational potential function

Roll angle of rocket
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Section

2

10

A1l

All

A1l

Definition
General function
Heading angle of rocket in fi system
Angular rotation vector

Y
Components of w
Matrix such that the element in the jth
row and kP column is w. sijk: where

1

Sijk is the generalized Kroneker delta
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REQUIRED INPUT PARAMETERS

Launch Point Parameters

Symbol

IDLA
L1O

1DH

ZL

TLO

TDH

Units

Degrees

Degrees

Degrees

Degrees

Feet
Feet

Feet
Feet/sec.e
Degrees
Degrees

Feet

1+
o g
H
@]
o 0
H
=B

Description

Range and increment of launch X X X X
angle, measured from vertical

Firing azimuth, measured posi-
tive clockwise from north

Launch point geodetic latitude,
measured positive north from
equator

Launch point longitude, mea-
sured positive west from
Greenwich

Launch point geodetic heighth
above sea level

Launch point heighth above X X X X
sea, level

Launcher length X X X X
Acceleration due to gravity X X X X

Target geodetic latitude
Target longitude

Target geodetic height

I\
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Initial Position and Velocity Parameters

Symbol

To

X

NI

Units

Seconds

Feet

Feet

Feet

Feet/sec.

Feet/sec.

Feet/sec.

Feet/sec.

Feet/sec.

Degrees

Degrees/sec.

Degrees

Degrees

Stage (Phase) Parameters

TS

Tt

Seconds

Seconds

Descrip-.ion E
Initial tire X
Initial range rom launch X
point, ceasure«. along fir-
ing azimuth lire
Initial cross :ange
Initial altitude, above X
launch point '
Initial velocity component
along longitudinal axis of
rocket
Initial velocity component
normal to longitudinal axis
of rocket
Initial horizontal velocity X
component
Initial vertical velocity X
component
Initial velocity
Initial heading, measured
positive clockwise from FAZ
line
Initial pitch rate, measured
positive from vertical
Initial pitch angle, measured
from vertical
Initial flight path angle, X
measured positive from verti-
cal
Time of separation X
Time of igniticn X

Program
2 3%
X X X
X X X
X X X
X X X
X X X
X
X
X X X
X X X
X
X X X
X X X

L T A

»

X
X
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Symbol

Tgo
o

PL Sep.

Ref. Area

Table Parameters

Units

Seconds

Feet

Radians/ft.
(Inch)? |
Pounds
Seconds

(Inches)?

for Each Stage

Description
Time of burnout

Center of thrust, measured
from base of rocket to throat
of nozzle

Damping center of pressure,
measured from base of rocket

Fin center of pressure, mea-
sured from base of rocket

Fin 1ift factor (% of total
1ift)

Roll rate = (KR) x velocity
Exit area

Payload weight

Time of payload separation
Reference area for aerodynamic

coefficients

or Flight Phase

Thrust vs. Time

Weight vs. Time

Drag Coefficient
vs. Mach No.

Lift Coefficient
Slope vs. Mach
No.

Center of Pres-

sure vs. Mach No.

Moment of Iner-
tia vs. Time

Center of Grav-
ity vs. Time

Pounds

Pounds

(Radian)-

Feet
Slug-ft.2

Feet

* N/CLSF can be substituted by a table of Fin Lift Coefficient Slope vs. Mach No.

*¥*KR can be substituted by a table of Roll Rate vs. Time.

I+

4 5

X X

X

X

X

X

X

X X

X X

X X

X X

X X
X

X

X

X

X
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OPERATIONAL FLCW I'ROCED JRE FOR

COMPUTER SINMNUL/TION 'TA3KS

REQUEST PREPARE DRAFT LIST AL% —
FROM > OF SIMULATION|— i PARMMETE:S ‘>( ARE ALL PARA- AYE—S
CLIENT PLAN NTEDED \ "ETFRS ON HAND./
NO
MODTFY PIACE NEW REQUEST UN-
STVULATION PARANITIRS KNCUN PAR/DETERS
PLAN IN CATALOG FROM CLITNT
/
COMPILE COMPLETE PLAN FOR STIMULATION p——
WITH PARAMETER CHANCES ON FACH & LIST DOES 9:§:NT YES
OF ALL PARAMETERS TO BE USED; AGREE?
SEND TO CLIENT FOR CONCURENCE o
_ CO¥PILE CARD DECKS OF
REPARE IN REP/RT -
53751;()?;23}5? PREP/IE | INITIAL CONDITIONS AND
M omErs SFECIALIZES TABLES FOR PLANNED
TABLZS SEQUENCE OF COMPUTER RUNS
|
EDIT, ves
COMPUTE comrie | DOES DATA SATISFY
! CLIENTS REQUEST?
& ANALYZE DAT/
NO

PREPARE
REPORT
ON TASK
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